The area bounded b

$$|x| = \frac{1}{2} \text{ will be :} \qquad |x| = \frac{1}{2} \text{ will be :} \qquad |x|$$

Area bounded by the curve $y = \log x$ and the coordinate axes is [209n. n - (1.20. dn) = [logn. n-n]

Area between the curve $y = \cos^2 x$, x-axis and ordinates x = 0 and x = R in the interval (0, p) is

Directions: Read the following statements

and choose the correct option from the given below four options.

Consider the following statements

Statement I: The area bounded by the

curve $y = \sin x$ between x = 0 and x = 2p

is 2 sq. units.

Statement II: The area bounded by the

curve $y = 2 \cos x$ and the x-axis from

x = 0 to x = 2p is 8 sq. units.

- (a) Statement I is true
- (b) Statement II is true
- (c) Both statements are true
- (d) Both statements are false

Area bounded by the lines y = |x| - 2 and y = |x| - 2y = 1 - |x - 1| is equal to (m)4 sq. units 6 sq. units 8 sq. units 2 sq. units y= 1- (n-1)= a-n;

What is the area of the triangle bounded by the lines y = 0, x + y = 0 and x = 4?

(a) 4 units

(b) 8 units

(c) 12 units

(d) 16 units

The area of the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 in

The ellipse is rotated about its centre in anti-clockwise direction till its major axis coincides with y-axis. Now the area of the ellipse in first quadrant

is π sq. units.

(a) $\widetilde{2}$

2

(b) 4

(013) (d) 8

Directions: This section contains multiple choice questions. Each question has four choices (a), (b), (c) and (d), out of which only one is correct.

The area bounded by curves

$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$ is

(a)
$$\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$$

b)
$$\frac{2\pi}{3}$$

(c)
$$\frac{\sqrt{3}}{2}$$

(d)
$$\frac{2\pi}{3} + \frac{\sqrt{3}}{2}$$

Area of triangle whose two vertices formed from the x-axis and line y = 3 - |x| is

(a) 9 sq. units

(b) 9/4 sq. units

(c) 3 sq. units

(d) None of these

1	2	3	4	5	6	7	8	9	10
С	В	D	В	Α	В	В	В	Α	D